Abbildungen der Seite
[ocr errors]

Figure 8.- The apparent change in cycle of asteroid rotation at various longitudes, plotted for four values of the latitude of the pole, 90° longitude of pole; asteroid is on the ecliptic.

[ocr errors][merged small]

Figure 9.—Same as figure 8 except asteroid is 20° above the ecliptic.

precision is needed in the timing of lightcurves to establish precise epochs of maximum or minimum light. Without precise timing, it is impossible to have high precision when comparing epochs from different oppositions.

ACKNOWLEDGMENT The asteroid program at the University of Arizona is supported by the National Aeronautics and Space Administration.


Ahmad, I. I. 1954, Photometric Studies of Asteroids. IV. The Light-Curves of Ceres, Hebe, Flora, and Kalliope. Astrophys.J. 120, 551-559. [1]

Beyer, M. 1953, Der Lichtwechsel und Die Lage der Rotationsachse der Planeten 433 Eros während der Opposition 1951-52. Astron. Nachr. 281, 121-130. [2]

*The numbers in brackets are as used in table I.


Calder, W. A. 1935, Photoelectric Photometry of Asteroids. Harvard Bull., no. 904, pp.
Chang, Y. C., and Chang, C. S. 1962, Photometric Investigations of Seven Variable
Asteroids. Acta Astron. Sinica 10, 101-110. [3]
Chang, Y. C., and Chang, C. S. 1963, Photometric Investigations of Variable Asteroids. II.
Acta Astron. Sinica 11, 139-148. [4]
Dunlap, J. L., and Gehrels, T. 1969, Minor Planets. III. Lightcurves of a Trojan Asteroid.
Astron. J. 74, 796-803. [5]
Dunlap, J. L., and Gehrels, T. 1971, Minor Planets and Related Objects. VIII. Astron. J.
76, in press. [6]
Fichera, E. 1958, Astron. Nachr. 284, 65-70.
Gehrels, T. 1956, Photometric Studies of Asteroids. V. The Light-Curve and Phase
Function of 20 Massalia. Astrophys.J. 123,331-338. [7]
Gehrels, T. 1957, Photometric Studies of Asteroids. VI. Astrophys.J. 125, 550-570.
Gehrels, T. 1967a, Minor Planets. I. The Rotation of Vesta. Astron. J. 72, 929-938. [8]
Gehrels, T. 1967b, Minor Planets. II. Photographic Magnitudes. Astron. J. 72, 1288-1291.
Gehrels, T. 1970, Photometry of Asteroids. Surfaces and Interiors of Planets and Satellites
(ed., Dollfus), pp. 317-375. Academic Press, Inc. London.
Gehrels, T., and Owings, D. 1962, Photometric Studies of Asteroids. IX. Additional
Light-Curves. Astrophys.J. 135,906–924. [9]
Gehrels, T., Roemer, E., Taylor, R. C., and Zellner, B. H. 1970, Minor Planets and Related
Objects. IV. Asteroid (1566) Icarus. Astron. J. 75, 186-195. [10]
Giclas, H. L. 1951, Direct Photoelectric Photometry. The Project for the Study of
Planetary Atmospheres. Lowell Observ. Rept. 9, pp. 33-72. [11]
Groeneveld, I., and Kuiper, G. P. 1954a, Photometric Studies of Asteroids. I. Astrophys.J.
120, 200-220. [12]
Groeneveld, I., and Kuiper, G. P. 1954b, Photometric Studies of Asteroids. II. Astrophys.
J. 120, 529-546. [13]
Haupt, H. 1958, Photoelektrisch-photometrische Studie an Vesta. Mitt. Sonnobs.
Kanzelhöhe 14, 172-173. [14]
Hertzsprung, E. 1928, On the Character of the Variation of SX Aurigae. Bull. Astron. Inst.
Neth, 4, 178-180.
Hertzsprung, E. 1941, Photographic Estimates of 25 Southern Variable Stars. Bull. Astron.
Inst. Neth, 9, 203-215.
Houten-Groeneveld, I. van, and Houten, C. J. van. 1958, Photometric Studies of Asteroids.
VII. Astrophys.J. 127, 253–273. [15]
Houten-Groeneveld, I. van, and Houten, C. J. van. 1972, in preparation. [16]
Johnson, H. L. 1963, Photometric Systems. Basic Astronomical Data (ed., A. K. Strand),
vol. 3, pp. 204-224. Univ. of Chicago Press. Chicago.
Kuiper, G. P., Fujita, Y., Gehrels, T., Groeneveld, I., Kent, J., Van Biesbroeck, G., and
Houten, C. J. van. 1958, Survey of Asteroids. Astrophys. J. Suppl. Ser. 3, 289–427.
Miner, E., and Young, J. 1969, Photometric Determination of the Rotation Period of
1566 Icarus. Icarus 10,436–440. [18]
Miner, E., and Young, J. 1971, Photometric Observations of 1620 Geographos. Icarus, in
press. [19]
Müller, G. 1897, Die Photometrie der Gestirne. Engelman. Leipzig.
Sather, R. E., and Taylor, R. C. 1972, Minor Planets and Related Objects. IX. Astron J.
77, in preparation. [20]
Shatzel, A. V. 1954, Photometric Studies of Asteroids. III. The Light-Curve of 44 Nysa.
Astrophys.J. 120, 547-550. [21]
Stephenson, C. B. 1951, The Light-Curve and the Color of Vesta. Astrophys. J. 114,
500-504. [22]

Stobbe, J. 1940, Der Lichtwechsel des Eros. Astron. Nachr. 270, 1-24.
Taylor, R. C., and Gehrels, T. 1972, Minor Planets and Related Objects. IX. Astron. J. 77,
in preparation. [23]
Taylor, R. C., Gehrels, T., and Silvester, A. B. 1971, Minor Planets and Related Objects.
VI. Asteroid (110) Lydia. Astron. J. 76, 141-146. [24]
Tempesti, P., and Burchi, R. 1969, A Photometric Research on the Minor Planet 12
Victoria. Mem. Soc. Astron. Ital. Nuova Ser. 40,415-432. [25]
Univ. of Arizona. 1972, Data to be published by group working with T. Gehrels. [26]
Veverka, J. 1971, Photopolarimetric Observations of the Minor Planet Flora. Icarus, in
press. [27]
Veverka, J., and Liller, W. 1969, Observations of Icarus: 1968. Icarus 10, 441-444. [28]
Wood, H. J., and Kuiper, G. P. 1963, Photometric Studies of Asteroids. X. Astrophys.J.
137, 1279-1285. [29]


University of Arizona

To evaluate the precision of the previously determined coordinates of the rotation axes (table I) we should review the methods (originally developed for 433 Eros) and logic of the various authors. Table II contains pole coordinates of Eros and the sources of these data. A critical summary of the work will enable us to make some conclusions concerning the poles presented.


There is general agreement that greatest rotational amplitude is observed when an asteroid is viewed equatorially, and we can detect three approaches to the determination of the Eros pole: the micrometer position angles observed by van den Bos and Finsen (1931); the graphic presentations used by Watson (1937), Stobbe (1940), and Rosenhagen (1932); and the mathematical model developed by Krug and Schrutka-Rechtenstamm (1936). These initial attempts yielded only approximate values, but the approximations were sometimes refined by analytical methods.

Micrometer Measurements of Position Angles

Eros is the only asteroid to have directly observed micrometer measurements of the position angles of the projection of its long axis. Van den Bos and Finsen (1931) found the position angle rotating over 360° in 5h 17m and a separation of “about 0.18.” The precision of the measurements of the position angle may be +5° (Van Biesbroeck, personal communication).

In 1931, W. Zessewitsche (1932, 1937) graphically determined the equator of Eros from the observations of van den Bos and Finsen (1931). He determined an average position angle of the line of intersection of the projection of the long axis of Eros with the projection plane perpendicular to the line of sight at a given time and assumed the pole to be this position angle plus 90°. Zessewitsche calculated a value for the inclination of the equator of Eros to the projection plane at that time and determined the pole coordinates. The pole determination enabled him to calculate the Erocentric right ascension

« ZurückWeiter »