Abbildungen der Seite
PDF
EPUB

The Moon's Phases, 1942 (Standard Time)

(A.M., light figures; P.M., black)
Eastern Central Mountain Pacific

Std. Time Std. Time Std. Time Std. Time
Day. Boston, New St. Louis, New Denver, Salt San Francisco

York, Etc. Orleans, Etc. Lake City, Etc. L.Angeles, Etc.
H. M.
H. M.
H. M.

H. M.
2
10 42
9 42
8 42

7 42
10
1 5

12 5
9d 11 5

10 5
4 32
3 32
2 32

1 32
24
1 35
12 35 23d 11 35

10 35

[graphic]

Feb.

March

April

May

Last Quarter 1

1 18

12 18
310 11 18

10 18

8 18 New Moon... 8

10 19
9 19
8 19
7 19

5 19 First Quarter. 15

156

12 56
140 11 56

10 56

8 56 Full Moon. 22

3 24
2 24
1 24
12 24

10 24 Last Quarter. 30

8 37
7 37
6 37
5 37

3 37 New Moon 7

8 59
7 59
6 59
5 59

3 59 First Quarter 14

12 47
11 47
10 47
9 47

7 47 Full Moon... 22

10 3
9 3
8 3
7 3

5 3 Last Quarter

30
1 37
12 37
11 37
10 37

8 37 The Moon The moon completes & circuit around the earth The nodes have a retrograde motion, which in a period whose mean or average length is 27 causes them to make an entire revolution in 18 days 7 hours 43.2 minutes; but in consequence of its years 218 days 23 hours 5 minutes and 46 seconds. motion in common with the earth around the sun,

Both sun and moon return to a node after 18 the mean duration of the lunar month-that is, the years and 11 days, so that an eclipse is followed by

another of the same general character at the end time from new moon to new moon-is 29 days 12

of this period. hours 44.05 minutes, which is called the moon's The moon always presents the same face to the synodical period.

earth, as is evident from the permanency of the The mean distance from the earth according to various markings on her surface. This proves that the American Ephemeris is 238,857 miles. The the moon revolves on an axis, and the time of maximum distance, however, may reach 252,710 rotation is exactly equal to the time of revolution miles, and the least distance to which the moon around the earth-viz., 27.32166 days. can approach the earth is 221,463 miles.

The moon's

axis is not perpendicular to the Its diameter is 2,160 miles, and if we deduct plane of her orbit, but deviates therefrom by an from her distance from the earth the sum of the angle of about 6° 41'. two radii of the earth and moon-viz., 3,963 and The moon's surface contains about 14,657,000 1,080 mlles, respectively-we shall have for the square miles; the volume is 1-49 and mass 1-81 that nearest approach of the surfaces of the two bodies of the earth, or about 3 2-5 that of water. 216,420 miles.

At the lunar surface gravity is only 1-6 of what The orbit's form is that of a serpentine curve, it is at the earth. always concave toward the sun, and its plane is The centre of gravity of the earth and moon, or inclined to the plane of the earth's orbit at an the point about which they both actually revolve in angle of 4° 59' to 5° 18' the mean value being 5° 8'. their course around the sun, lies within the earth.

These points of intersection with the ecliptic are it is 1.050 miles below the surface. called nodes, and it is only at or near them that The tides are caused mainly by the moon, the eclipses can occur.

tide-raising power of moon and sun is 11 to 5.

Jan.

Planetary Configurations, 1942

(Eastern Standard Time. A. M. light figures; P. M. black figures) D. H. M.

D. H. M. in perihelion

July

ob ON 0° 4' stationary

in aphelion

gr. elong. W 21° 23'
ON 2° 23'
$ $ $ 6° 15'
stationary

N 2° 48'
CON 5° 26'

N 4° 14'
gr. elong. E. 18° 31'

in aphelion in

OP N 2° 35 b N 2° 43'

US 0° 22' 2 N 4° 43'

in de

in perihelion
in perihelion
stationary
Aug.

2 R$ 0° 21'
in perihelion

O superior

[ocr errors]
[ocr errors]

२१ २२२१

[ocr errors]

Aug.

aaaaa

[merged small][merged small][ocr errors][merged small]
[ocr errors]
[ocr errors]
[ocr errors]

ana

Qaa

* N 5° 8 8 N 1° 6' stationary

N 6° 27'

N 300 stationary C2 N 4° 55' bON 3° 28'

[ocr errors]

z z2zzzzz

Sept.

23
23

a aga

[ocr errors]
[merged small][merged small][ocr errors][ocr errors][ocr errors][merged small]

23 11 17

partial eclipse COS 1° g'

8 S 6° 1' in perihelion gr. elong. E 26° 40' enters aut. com stationary

stationary Cb N 3° 17'

2 N 3° 28'

14 10

qaa

[blocks in formation]
[blocks in formation]

O qaa a aa a a a

gr. elong. W. 46° 19'

[ocr errors]
[ocr errors]
[ocr errors]
[ocr errors]
[ocr errors]

2° 32' 8 2° g'

ON 6° 25'
in 8
in perihelion

195
20
23 8

stationary

in perihelion OP ON 0° 45

gr. elong W 18° 28'

[merged small][merged small][merged small][ocr errors][ocr errors][ocr errors]
[ocr errors]
[ocr errors]

gr. elong. E 22° 11'
ON 5° 32'

in aphelion
stationary
in u

[ocr errors]
[ocr errors]

stationary
superior
b N 3° 0'

in 09
C2 N 2° 59'

in og
o superior

[blocks in formation]
[ocr errors]

enters » winter com.

in 0
| 22 3 0 C 2 N 3° 5

[blocks in formation]
[ocr errors]

1

A Andromedae

H. M.
A Geminorum

R. M. (Alpheratz) 2.2 0.05 65 0 5.4 +28 46

(Castor) 1.6 10.07 50 7 30.9 +32 1 B Cassiopeiae. 2.4 0.07 50 06.11 +58 50|| A Canis Min. r Pegasi.. 2.9 0.01 300

0 10.2 +14 52

(Procyon) 0.5 0.31 10 7 36.3 + 5 23 A Phoenicis .. 2.4 0.05 65 0 23.4 - 42 37 || B Geminorum A Cassiopeiae

(Pollux) 1.2 0.10 33 7 41.81 +28 10 (Schedir) 2.3 10.02) 150 0 37.2 +56 13P Puppis. 2.9 0.02| 150 8 5.1 - 24 8 B Ceti.

2.2 0.04 80 0 40.71-18 1814 Velorum.. 2.2 0.02 150 9 5.9-43 12 r Cassiopelae 2.2 0.04 80

0 53.2 +60 24 A Hydrae.. 2.2 0.02 150 9 24.7 - 8 24 B Andromedae 2.4 10.05 65

1 6.5 +35 19 A Leonis A Cassiopeiae. 2.8 0.07 50

1 22.0 + 59 56

(Regulus) 1.3 0.06 55 10 5.3 +12 15 A Eridani

r Leonis .... 2.6 0.02 150 10 16.8 +20 (Acheroar) 0.6 0.05 65 1 35.6) - 57 32 B Ursae Maj..] 2.4 10.04 80 10 58.4 + 56 42 A Ursae Min.

A Ursae Maj.. 2.0 10.05 65 11 0.2 +62 4 (Pole Star) 2.1 0.01 300 1 43.81 +88 59| 4 Leonis .... 2.6 0.07 50 11 11.0 + 20 51 B Arietis... 2.7 0.07 50 1 51.4 +20 32B Leonis r Andromedae 2.3 0.02 150 2 0.3 + 42 3 (Denebola)] 2.2 10.10 * 33 11 46.1 +14 54 A Arietis.

2.2 10.04 80 2 3.91 +23 11r Ursae Maj.. 2.5 0.04 80 11 50.81 +54 1 B Trianguli. 3.1 0.01 300 2 6.1+34 43|| A Crucis.. 1.0 0.02 150 12 23.4 - 62 47 O Ceti (Mira). 2.0 0.07 50 2 16.5 - 3 15B Corvi..

2.8 0.031 100 12 31.3 - 23 5 A Ceti.

2.8 0.02 150 2 59.2 + 3 52 r Virginis. 2.9 10.07 50 12 38.7 - 1 8 T Persei. 3.1 0.01 300

3 0.61 +53 17 B Crucis. 1.5 0.01 300 12 44.3 - 59 22 A Persei.

1.9 0.02 150 3 20.2 + 49 39|| E Ursae MajA Persei. 3.1 0.01 300

3 38.8 +47 36 oris (Alioth) 1.7 0.06 55 12 51.51 +56 16 H Tauri

z Ursae Maj(Alcyone) 3.0 0.01 300 3 44.01 +23 56 oris (Mizar) 2.4 0.04 80 13 21.6 + 55 14 Z Persel.... 2.9 0.01 300 3 50.5 +31 43|| A Virginis E Persei. 3.0 0.00 500 3 54.0 +39 51

(Spica) 1.2 0.01 300 13 22.1 - 10 52 r Eridani, 3.2 10.02150 3 55.3 - 13 40 H Ursae Maj E Tauri.. 3.6 10.03) 100 4 25.3 +19 3

(Alkaid) 1.9 0.01 300 13 45.3 + 49 36 A Tauri

H Bootis..... 2.8 10.10 33 13 51.9+18 41 (Aldebaran) 1.1 10.06 55 4 32.61 +16 24B Centauri.. 0.9 0.04 80 13 59.71 - 60 6 II Orionis 3.3 10.13 25 4 46.7 + 6 53| Centauri.... 2.3 0.05

65 14

3.3-36 1 Aurigae, 2.9 10.02| 150

4 53.2 +33

5A Bootis H Aurigae. 3.3 0.01/ 300

5 2.4 +41

9 (Arcturus) 0.2 10.10 33 14 13.0 +19 29 B Eridani. 2.9 0.05 65 5 5.0 5 10A Centauri....0.1 0.76 4 14 35.6) - 60 36 B Orionis

E Bootis.. 2.7 0.02) 150 14 42.5 +27 19 (Rigel) 0.3 0.00 500 5 11.7 8 16||B Ursae Min.. 2.2 0.04 80 14 50.9 + 74 24 A Aurigae

A Coronae (Capella) 0.2 0.07 50 5 12.4 +45 56

Borealis 2.3 0.05 65 15 32.21 +26 55 r Orionis

A Serpentis... 2.8 0.04 80 15 41.4 + 6 36 (Bellatrix)] 1.7 10.02) 150 5 22.0 + 6 18 A Scorpii.. 2.5 10.00 500 15 56.9 - 22 27 B Tauri.. 1.8 0.031 100 5 22.61 +28 34B Scorpii.

2.9 10.000 500 16 2.11 - 19 39 A Orionis. 2.5 10.00 500 5 29.0 - 020 A Scorpii A Leporis 2.7 (0.02 150 5 30.2-17 52

(Antares) 1.2 0.02 150 16 25.8-26 18 I Orionis 2.9 0.00 500 5 32.6 5 57 B Herculis .. 2.8 0.02 150 16 27.71 +21 37 E Orionis. 1.8 0.01 300 5 33.3 - 1 14 A Triangull Z Tauri, 3.0 0.01) 300 5 34.2 +21 7

Australis) 1.9 10.03 100 (16 42.5 - 68 55 z Orionis. 2.0 10.00 500 5 37.8 1 58 E Scorpil,

2.4 0.04 80 16 46.4-34 11 K Orionis. 2.2 0.01 300 5 45.0 9 41 H Ophiuchi... 2.6 0.03 100 17 7.01 - 15 39 A Orionis

A Scorpii. 1.7 0.02) 150 (17 29.7 -37 4 (Betelgeux) 1.0 0.02] 150 5 52.0 + 7 24A Ophiuchi 2.1 0.05 65 17 32.2 +12 36 B Aurigae... 2.1 10.03| 100 5 55.3 +44 57|r Draconis. 2.4 (0.021 150 17 55.3 +51 30 O Aurigae. 2.7 0.03) 100 5 55.8 +37 13 || A Lyrae (Vega) 0.1 0.12 27 18 35.0 + 38 44 B Canis Maj.. 2.0 0.01 300 6 20.1-17 56||A Aquilae A Carinae

(Altair) 0.9 0.20 16 19 48.0 + 8 43 (Canopus) -0.9 0.02 150 6 22.7 - 52 40|| r Cygni.

2.3 0.00 500 20 20.1 + 40 4 r Geminorum 1.9 0.05 6 34.4 +16 27| A Pavonis..... 2.1 0.01 300 20 21.1 -56 55 A Canis Ma

A Cygni joris (Sirius) -1.6 0.37

6 42.6 -16 38

(Deneb.) 1.3 0.01 300 20 39.5 +45 4 E Canis Maj.. 1.6 0.01 300 6 56.3 - 28 54 E Pegasi......

2.5 0.02 150 21 41.31+ 9 36 A Canis Maj.. 2.0 0.01 300 7 6.0 -26 18||A Piscis

Australis) 1.3 10.14 23 22 54.5 - 29 56 To find the time when star is on meridian, subtract R. A. M. S. of the sun table below from the star's Right Ascension, first adding 24h to the latter, if necessary; mark this result P. M. If less than 12h.; but if greater than 12h. subtract 12h. and mark the remainder A. M.

Right Ascension of Mean Sun, 1942

(At Washington-Mean Noon)
R. A.
R. A.
R. A.
R. A.
R. A.

R. A. Date M. S. Date M. S. Date M. S. Date M. S. Date M. S. Date M. S. Н. M.

H.
M.

M.
H. M.
H. M.

H. M. Jan. 1 18 42.9 Mar. 2 22 39.5 May 1 2 36.0 June 30 6 32.5' Aug. 29 10 29.11 Oct, 28 14 25.6 11 19 22.3

12 23 18.9 11 3 15.4 July 10 7 12.0 Sept. 811 8.5 Nov. 715 5.0 21 20 1.8 22 23 58.3 21 3 54.8

20 7 51.4

18 11 47.91 17 15 44.5 31 20 41.2 April 1) 0 37.7

31 4 34.2
30 8 30.8

28 12 27.3 27.16 23.9 Feb. 10 21 20.6 11 i 17.1 June 10 5 13.7 Aug. 19 9 10.2 Oct. 813 6.8|| Dec. 717 3.3 20 22 0.01 211 1 56.5

20 5 53.1
29 9 49.7

1813 46.211 17117 42.8 The Right Ascension of Mean Sun increases 3.943 minutes daily.

65

H.

Notable Telescopes Astronomical telescopes are of two kinds, re- the Lick Observatory, Mt. Hamilton; 36-Inch, fracting and reflecting.

University of California, at Santiago, Chile; 36In the Arst, the light falls upon a lens which inch, in the Steward Observatory, Tucson, Ariz. A converges the rays to a focus, where the image may new 82-inch reflector (dedicated May 5, 1939) is be magnified by a second lens, called the eyepiece, on Mt. Locke, near Fort Davis, Texas, financed or may be directly photographed.

jointly by the University of Texas and the UniverThe reflector consists of a concave mirror, gen-sity of Chicago. A 200-inch reflecting telescope, the erally of glass coated with silver or aluminum,

largest in the world, is for the California Institute which throws the rays back toward the upper end of Technology at Pasadena, California. It is located of the telescope, where they fall on the eyepiece or

on Mt. Palomar, 5,565 feet elevation, 66 miles on the photographic plate, as in the case of the north of San Diego and 124.9 miles southeast of refractor. In some telescopes the light is reflected Pasadena. The 200-Inch glass disk was poured on again by a secondary mirror and comes to a focus Dec. 2, 1934, at Corning, N. Y. The project was either to the side or after passing through a hole in completed in July, 1939. the principal mirror.

The 74-inch reflector of the Dunlop Observatory Since the rays of light do not pass through the has a glass of Pyrex. mirror, far less perfect glass is required and re

A 74-inch reflector is being made for the new flectors can be made much larger than refractors. Radcliffe Observatory at Pretoria, So. Africa. The

For many kinds of celestial photography reflectors mirror is of pyrex glass. are better than refractors.

The U. S. Naval Observatory, Washington, has a

new reflector of the Ritchey-Chretien type, the. The largest refractors in the world are: 40-inch of the University of Chicago, at the Yerkes Ob- is commanded by the usual type of reflector. When

chief characteristic of which is a larger field than servatory. William Bay, Wis. (62 feet long): 36

the instrument is used photographically it is necesinch of the University of California, at the Lick sary that the films or plates be somewhat curved Observatory, Mount Hamilton: 3212-inch, in the in shape. observatory at Meudon, France; 3112-inch, in the Photographic refractions having a 2, 3, or 4 lens astrophysical observatory at Potsdam, Germany; objective are smaller in size and shorter in length. 30-inch, at Pulkova, Russia; 30-inch, Univ. of The best known of these are: the 27-inch refractor Paris, at Nice; 28-inch, in Royal Observatory, of the University of Michigan, at Bloemfontein, Greenwich, England; 30-inch photographic re- South Africa; the 26-inch refractor of Yale Unifractor of the University of Pittsburgh; the 26-versity, at Johannesburg, South Africa, the 24-inch inch instruments at the U.S. Naval Observatory, of the Harvard Observatory at its station in South Washington, and at the University of Virginia. Africa; two of 16 inches at Heidelberg and at the

The largest reflectors are: 74-inch, David Harvard Observatory; and the 10-inch Bruce teleDunlop Observatory, University of Toronto, at scope at the Yerkes Observatory. Richmond Hill, 12 miles north of Toronto, Can.; The light-gathering power of a telescope is pro72-inch, in the Dominion Astrophysical, Victoria, portional to the area of its lens or mirror. The B. C.; 69-inch, Ohio Wesleyan University, Dela-40-inch Yerkes refractor increases the amount of ware, O.; 100-inch, Carnegie Institution, Mt. Wil light forty thousand times that received by the eye. son, Calif.; 61-inch, Oak Ridge station of Harvard; The magnifying power of a telescope is propor60-inch, Harvard Univ., in South Africa; 4892- tional to the ratio of the length of focus of the inch, Berlin-Babelsburg, Germany; 42-inch, Lowell large lens to that of the eyepiece. Observatory, Flagstaff, Ariz.; 3914-inch, Hamburg Thus the use of different eyepieces yields various University, Bergedorf, Germany: 374-inch, Detroit magnifying powers, but those exceeding 1,000 are Observatory of the University of Michigan, at Ann seldom used because of the trembling of the Arbor; 36-inch, of the University of California, in earth's atmosphere.

Polar Star, 1942
Mean time of upper transit (at Washington) and Polar Distance of Polaris
Upper Pole
Upper Pole

Upper Pole Date Transit Dist. Date

Transit Dist. Date

Transit Dist.

o

[ocr errors]

Jan

H. M. s.
H. M. S.

H. M. s. 17 0 36 P.M.10 26 May .1.11 7 22 A.M.1 0 46 Sept. 11 3 5 52 A.M./1 0 48 Feb. 1 4 58 5 P.M.1 0 24 June,

9 5 51 A.M.1 0 53' Oct. 1 1 8 17 A.M.1 0 38 Mar. 13 7 29 P.M.1 0 28 July.

8 26 A.M. 1 0 56 Nov. 111 2 34 P.M.I 0 27 Apr 11 5 17 P.M.1 0 37 || Aug.. .11 5 7 12 A.M.1 0 55 Dec. 11 9 4 25 P.M.II 0 16

Upper transit of Polaris occurs, on the average, upper transit and 6h. 2m. after lower transit, 3m. 56s. earlier each day. The interval between lower and upper transit of Polaris is lih. 58m. 2s.

while the greatest Western elongation occurs 5h. At the latitude of Washington, D. C., the greatest

56m. after upper transit and 6h, 2m. before lower Eastern elongation of Polaris occurs 5h. 56m. before transit.

The Moon's Perigee and Apogee, 1942

11

(Eastern Standard Time. A.M. light figures; P.M. black)
Perigee, 1942

Apogee, 1942
D. H.
D. H.

D.
H.

D. н. January 14 5 July 26 4 January

26 12 July

10 7 February

7 August

23
4 February

23
9 August

7 8 March 8 6 September. 18 10 March

23 5 September 4

1 April 4 1 October

14
12 April
19 11 October

1

8 May 2 2 November 10 12 May

17 10 October

29 May 30 11 December. 8 7 June

13 2 November. 26 9 June 27 81

December 23 6 Each month the moon is said to be in perigee The average time from perigee to perigee, or from when nearest to the earth and in apogee when apogee to apogee, is 27d. 13h. 18m. 33s; known as farthest from the earth.

the anomalistic month.

Morning and Evening Stars, 1942
MORNING STARS

EVENING STARS
Mercury--February 9 to April 20; June 12 to August Mercury-January 1 to February 9; April 20 to June

12: August 2 to October 10; November 30 to end 2; October 10 to November 30.

of year Venus--February 2 to November 16.

Venus-January 1 to February 2; November 18 to

end of year. Mars-October 5 to end of year.

Mars January 1 to October 5. Jupiter---June 25 to end of year.

Jupiter-January 1 to June 25.

Saturn-January 1 to May 23; December 1 to end Saturn-May 23 to December 1.

of year.

Table of Magnetic Declination

Source: United States Coast and Geodetic Survey
Values observed at selected points, reduced to January, 1942; also the annual change.

A plus (+) sign to the annual change denotes increasing declination, and a minus(-) sign the reverse.

(Specially prepared for the World Almanac in the Office of the U. S. Coast and Geodetic Survey. Further information may be obtained by addressing The Director, U. S. Coast and Geodetic Survey, Washington, D. C.) Ap- Ap- Decl'a

Ap- Ap- Decl'a State Station prox. Jan.. An State Station prox. prox.

An Long 1942 Ch

Lat. Long. 1942 Ch

Jan.,

[ocr errors]
[ocr errors][ocr errors]

Ala...... Huntsville.. 34 44 86 35 4 20 E +2 | Mont... Helena.. 46 37 112 04 18 56 E Mobile.. 30 421 88 09 5 17 E +2 Neb..... Lincoln

40 50 96 40 9 40 E 0 Montgomery 32 22 86 18 3 06 E +

Omaha

41 16 95 58 9 02 E 0 Arlz..... Nogales. 31 21 110 56 13 55 E +1 || Nev.... Carson City. 39 07 119 46 17 55 E-1 Prescott.. 34 32 112 27 14 47 E 0

Eureka

39 31 115 58 17 15 E - 1 Yums. 32 44 114 37|14 58 E 0 N. H.... Concord

43 13 71 32 15 39W + 2 Ark... Little Rock.. 34 47 92 181 7 14 E +2 N. J.... Trenton

40 15 74 48 10 27W +1 Calif... Los Angeles. 34 05/118 15 15 53 E o||N. M. Santa Fe 35 41 105 57 13 26 E Sacramento.. 38 321121 30 17 05 E-1 N. Y... Albany

42 40 73 45 13 36W + 2 San Diego, 32 421117 13 15 14 E 0

Brooklyn. 40 35 73 54 11 21W +1 San Francisco 37 48 122 28 17 53 E-1

Buffalo

42 56 78 52 7 34W 0 Colo.... Denver.. 39 46 104 54 14 14 E O

Ithaca

42 27 76 28 9 35W+1 Conn... Hartford. 41 47 72 42 13 31W +2 N. C.... Raleigh.

35 471 78 39 4 16W 0 New Haven. 41 19 72 55 12 28W +2

Wilmington 34 13 77 56 3 17W 0 Del.. Dover...

39 09 75 31 8 47W 0N. D.... Bismarck 46 49 100 47 13 47 E-1 D. C. Washington.. 38 53 77 00 7 01W

Pembina. 48 58 97 15 9 27 E - 1 Fla.... Jacksonville. 30 22 81 401 02 E +1 Ohio.... Cincinnati 39 081 84 31 0 42 E+ Key West.. 24 33 81 48 3 01 E

Cleveland. 41 28 81 37 4 57W Tallahassee. 30 26 84 18 2 36 E+

Columbus. 40 03 82 59 1 48W Ga..... Atlanta. 33 44 84 22 1 40 E +2 || Okla... Atoka..

34 23 96 09 9 06 E Savannah. 32 01 81 04 0 24 E +1

Guthrie.

35 53 97 25 9 59 E Idaho... Boise...

43 37 116 12 19 11 E - 1 Oregon. Portland. 45 31122 43 22 51 E Illinois. Chicago.

41 47 87 35 2 24 E +1 Pa. Harrisburg 40 151 76 53 8 32W Springfield 39 50 89 39 3 54 E +1

Philadelphia 39 57 75 12 9 51W +1 lad..... Fort Wayne. 41 061 85 08 0 53W - I

Pittsburgh 40 29 80 01 5 33W - 1 Indianapolis. 39 48 86 12 0 36 El +2 R. I. Providence. 41 46 71 28 14 48W + 2 lowa.... Des Moines 41 36 93 34 7 22 EO S. C..... Charleston.. 32 46 79 49 1 34W 0 Keokuk. 40 231 91 23 5 25 E +1

Columbia. 34 02 81 03 0 03 E +1 Kansas. Ness City.. 38 281 99 5411 20 E 0 S. D..... Pierre.

44 22 100 2112 10 E-1 Topeka. 39 0295 43 9 13 E+1

Yankton. 42 53 97 23 10 40 E 0 Ky.... Lexington, 38 02 84 30 0 06 El +2 Tenn.... Knoxville. 35 57 83 57 0 35W Louisville... 38 14 85 42 0 40 E + 2

Memphis. 35 08 89 56 5 36 E + 2 Paducah. 37 03 88 36 4 20 E + 2

Nashville 36 09 86 441 3 30 E La... Baton Rouge.. 30 24 91 10 6 59 E + 2 || Teras... Austin.

30 16 97 46 9 28 E New Orleans.. 29 56 90 08 622 E +2

El Paso.

31 481106 26 12 45 E Shreveport, 32 28 93 42 7 54 E

Galveston. 29 19 94 471 8 44 E Malne.. Bangor 44 481 68 48 19 37W

Houston.. 29 43 95 23 9 07 E Eastport. 44 55 67 00 21 38W+1

San Antonio. 29 29 98 32 10 11 E Portland. 43 41 10 18 i; iiw 72 || Utah.. Ogden.

41 10 111 58 17 43 E Annapolis. 38 59 76 30 7 42W

Salt Lake City. 40 47 111 52 16 54 E Baltimore. 39 181 76 35 7 53W 0 Vt..... Burlington.. 44 28 73 12 15 01W Mass.... Boston.. 42 20 71 01 15 24W + 2

Montpelier. 44 15 72 32 16 42W Pittsfield. 42 26 73 15 13 51W + 2

Lynchburg. 37 24 79 08 4 09W Mich.... Detroit.. 42 20 82 58 2 45W 1

Norfolk., 36 52 76 16 6 19W Lansing 42 44 84 32 1 36W 1

Richmond 37 33 77 29 5 38W Marquette

46 33 87 23 0 26 E 1|| Wash... Olympia. 47 03 122 53 23 12 E Mina... Duluth 46 44 92 03 7 05 E-1

Walla Walla. 46 04 118 23 21 12 E St. Paul.

44 58 93 06 7 40 E-1 W. Va... Charleston, 38 21 81 38 3 15W Miss. ... Jackson, 32 20 90 12 6 44 E+2

Wheeling 40 04 80 401 2 47W - 1 Oxford.

34 22 89 32 5 55 E +2 Wis. .... La Crosse. 43 50 91 14 4 28 E 0 Mo...... Jefferson City. 38 34

92 11 7 01 E +1

Madison. 43 04 89 25 3 49 E 0 Kansas City .. 39 01 94 32 8 59 E +1

Milwaukee. 43 041 87 52 2 12 E 0 St. Louis... 38 391 90 18 4 47 E + 2 Wyo.... Cheyenne 41 09 104 52 14 44 E - 1

+++++++++!! + +1+1++11+

Md.....

Va....

TERRITORIES AND DEPENDENCIES
Alaska.. (Dutch Harbor..53 53 166 32 16 27 E-2T. H. ... Hilo.
Kiska..
51 59182 28 6 18 E 2

Honolulu
Kodlak.. 57 48 152 22 23 38 E 2 P.I. Manila.
St. Michael. 63 29 162 01/19 34 E 4 || P. R.. Ponce.
sitka...
57 03 135 20 29 48 E 2

San Juan
C. Zone. Colon.

9 211 79 571 5 12 El 1

19 44 155 04 10 01 E + 2 21 18 157 52 11 38 E + 2 14 34 120 59 0 52 E +1 18 02 66 38 5 25W 18 27 66 08 5 50W +5

CUBA Cuba... Havana........123 091 82 211 3 28 E1 + 111

Santiago....... 120 00 75 491 0 17 E - 2

EXTREME VALUES 147 10) 67 57122 36W Oll Alaska.. DemarcationPt. 169 39 141 00139 15 E

Maine.. Van Buren...

Rate of Speed of a Falling Body

Source: Aviation and Army Records. In the Arst second of its descent a body falls 16 = 144 feet; at the end of the fifth, 5 X 5 X 16 = feet; second second, 16 + 32 = 48 feet; third second, 400 feet. Conversely, to find the time in seconds to 16 + 84 = 80 feet; fourth second, 16 + 96 = 112 feet: fall any distance, divide the distance in feet by 16 Arth second, 16 + 128 = 144 feet; nth second, 16 + 32 and extract the square root; thus to fall a mile (n-1) feet. The total distance fallen by a body at divide 5,280 by 16, which gives 330, and the square the end of the nth second is given in feet by mul- root of 330 is a little over 18, the number of seconds tiplying the square of the time in seconds by 16. which is the vacuum time to fall a mile. Owing to

Thus at the end of the first second it has fallen the resistance of the air, it takes about 19 seconds 16 feet, at the end of the second second 2 X 2 X 16 for a bomb to reach the earth when dropped from 564 feet, at the end of the third second 3 X 3 X 16 an airplane a mile high.

« ZurückWeiter »